Personalised Spam Filter for Social Networks Using Machine Learning Algorithms
نویسندگان
چکیده
منابع مشابه
Trust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic
Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملMachine Learning for Naive Bayesian Spam Filter Tokenization
Background Traditional client level spam filters rely on rule based heuristics. While these filters can be effective they have several limitations. The rules must be created by hand. This requires the filter creator to examine a corpus of spam and cull out characteristics. This is a time consuming process and it is easy to miss rules which are quite effective at detecting spam. While the word ”...
متن کاملExploiting Machine Learning to Subvert Your Spam Filter
Using statistical machine learning for making security decisions introduces new vulnerabilities in large scale systems. This paper shows how an adversary can exploit statistical machine learning, as used in the SpamBayes spam filter, to render it useless—even if the adversary’s access is limited to only 1% of the training messages. We further demonstrate a new class of focused attacks that succ...
متن کاملUsing Machine Learning Algorithms for Author Profiling In Social Media
In this paper we present our approach of solving the PAN 2016 Author Profiling Task. It involves classifying users’ gender and age using social media posts. We used SVM classifiers and neural networks on TF-IDF and verbosity features. Results showed that SVM classifiers are better for English datasets and neural networks perform better for Dutch and Spanish datasets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioscience Biotechnology Research Communications
سال: 2020
ISSN: 0974-6455,2321-4007
DOI: 10.21786/bbrc/13.14/87